Given an array ofnpositive integers and a positive integers, find the minimal length of acontiguoussubarray of which the sum ≥s. If there isn't one, return 0 instead.
For example, given the array[2,3,1,2,4,3]
ands = 7
,
the subarray[4,3]
has the minimal length under the problem constraint.
Solution 1: j右移直到sum > = target,然后右移i,每次更新min,直到sum < target。
public int minSubArrayLen(int s, int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int i = 0, j = 0, sum = 0, min = Integer.MAX_VALUE;
for (;j < nums.length; j++) {
sum += nums[j];
//这个if可省去
if (sum < s) {
continue;
}
while (sum >= s) {
min = Math.min(min, j - i + 1);
sum -= nums[i];
i++;
}
}
if (min == Integer.MAX_VALUE) {
return 0;
}
return min;
}
Solution 2: 先求sum[],Since all elements are positive, the cumulative sum must be strictly increasing. Then, a subarray sum can expressed as the difference between two cumulative sum. Hence, given a start index for the cumulative sum array, the other end index can be searched using binary search. NlogN
private int solveNLogN(int s, int[] nums) {
int[] sums = new int[nums.length + 1];
for (int i = 1; i < sums.length; i++) sums[i] = sums[i - 1] + nums[i - 1];
int minLen = Integer.MAX_VALUE;
for (int i = 0; i < sums.length; i++) {
int end = binarySearch(i + 1, sums.length - 1, sums[i] + s, sums);
if (end == sums.length) break;
if (end - i < minLen) minLen = end - i;
}
return minLen == Integer.MAX_VALUE ? 0 : minLen;
}
private int binarySearch(int lo, int hi, int key, int[] sums) {
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (sums[mid] >= key){
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return lo;
}
Solution 3: O(NLogN) - search if a window of size k exists that satisfy the condition
public int minSubArrayLen(int s, int[] nums) {
int i = 1, j = nums.length, min = 0;
while (i <= j) {
int mid = (i + j) / 2;
if (windowExist(mid, nums, s)) {
j = mid - 1;
min = mid;
} else i = mid + 1;
}
return min;
}
private boolean windowExist(int size, int[] nums, int s) {
int sum = 0;
for (int i = 0; i < nums.length; i++) {
if (i >= size) sum -= nums[i - size];
sum += nums[i];
if (sum >= s) return true;
}
return false;
}